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ANALYTICAL TREATMENT OF TWO-DIMENSIONAL
SUPERSONIC FLOW

I. SHOCK-FREE FLOW

By J. J. MAHONY* anp R. E. MEYERY
Department of Mathematics, University of Manchester
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A solution is presented for the general, wave-interaction problem of steady, irrotational, homen-
tropic flow of a perfect gas. It can be interpreted as a convergent process of successive approxi-
mations, based on the solution of linearized theory, for shock-free flow. It constitutes an approxi-
mate solution for flow with weak shocks.

In part I, the equations of motion are transformed into linear equations in characteristic
variables. Their solution is of different type according to whether the flow is near-sonic, hyper-
sonic, or in between these extremes. Special attention is given to the types of boundary condition
which occur in physical problems, and solution methods are devised to cope with these types in
the medium Mach number range. The method of Riemann functions is used to calculate accurately
the pressure distribution in the first interaction region of a jet expanding from a perfect nozzle. It
is shown by the help of double power series that shock waves will always occur in the first ‘ period’
of such a jet, even for pressure ratios arbitrarily near unity. The Riemann function approach is also
shown to be suitable for the approximate calculation of the flow past aerofoils of prescribed shape;
when the requirements of accuracy are exacting, the method of double power series expansion

/ |\
A B

— :
< - presents the problem in a form suited to high-speed digital computers.
—
O H
M= 1. INTRODUCTION
)
= O A solution for the problem of plane waves of finite amplitude was given by Riemann (1860),
E 8 but the attempts to find a similar, analytical solution for the closely analogous problem of

steady, two-dimensional, supersonic, homentropic and irrotational flow of a perfect gas
have not been successful. An analytical solution for the special case of the simple wave was
given by Meyer (1908), and a purely numerical method of solution for the general problem

* Now at the Aeronautical Research Laboratories, Melbourne.
1 Now at the William & Agnes Bennett Supersonic Laboratory, Aeronautics Department, University of
Sydney.
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468 J. J. MAHONY AND R. E. MEYER ON THE

was formulated by Massau (19oo) and Busemann (1929). The analytical hodograph method

‘was pioneered by Chaplygin (1904) and developed by Lighthill (1947) and Cherry (1947,
1953), but great difficulties are still encountered in the adaptation of the solution to the
boundary conditions of physical problems. The solution by this method of the basic,
supersonic problem of the interaction of two simple waves has not yet been given.

It has been necessary, therefore, to rely largely on the approximate linearized theory
introduced by Ackeret (1925). It is versatile as far as the adaptation to physical boundary
conditions is concerned, but the approximation is not sufficient to account for important
‘non-linear’ features of the solutions, such as shock formation. Accordingly, attempts have
been made to extend this theory to higher approximations. Such extensions are par-
ticularly important for the more general problems of steady, supersonic, axially symmetrical
flow, spherical waves of finite amplitude, and similar problems, where the numerical method
of characteristics is cumbersome and to which the hodograph method cannot be extended.
For these problems the extension has met with particular difficulties, and it has indeed been
shown (Meyer 1948) that the solution of linearized theory for the axially symmetrical flow
is not the first of a convergent sequence of successive approximations. Some of the short-
comings of linearized theory have been removed in the ‘uniform’ first-order theories of
Whitham (1952) and Meyer (1952), but the extension of these theories to higher-order
approximations has not yet been achieved. A notable exception is the theory of Chen (1953)
for the neighbourhood of the axis in axially symmetrical, supersonic flow. Itis animportant
feature of the present method of solution that it can be generalized to steady, supersonic,
axially symmetrical flow, to spherical waves of finite amplitude, etc. In fact, the present
investigation has been conceived as a pilot experiment for the treatment of these more
complicated problems.

1-1.

The general solution of the equations of motion is here obtained in two stages. In §2
the equations are reduced to a pair of new equations by a transformation suggested by an
investigation of the structure of the solutions (Meyer 1949). The aim of the transformation
is twofold. First, the equations are brought into a form the analytical solution of which is
not complicated by the singularities of the correspondence between the flow plane and the
characteristic plane (or the hodograph plane). Secondly, certain analytic elements which
the earlier investigation (Meyer 1949) has shown to be common to all solutions are absorbed
into the transformation, so that the new equations may be regarded as formulating a reduced
problem which is less sensitive to the introduction of approximations than the original
problem. |

The reduced equations ((14) and (15), or (17) and (18)) are linear hyperbolic differential
equations-of standard type, and a number of solution methods are available of which
Riemann’s method and the expansion in double power series with respect to the charac-
teristic variables are found to be well suited to physical boundary conditions. The coeffi-
cients of the equations are regular except for poles at the sonic speed and at the vacuum
speed, and the solutions therefore differ somewhat in the cases of near-sonic flow, hypersonic
flow and flow in the Mach number range between these extremes. A first approximation to
the Riemann functions is given for the extreme cases (§§ 24, 2-5), but for the remainder of
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the paper, attention is confined to the medium Mach number range.* The Riemann func-
tions are found by a modification of Picard’s iteration process, which converges rapidly for
problems involving relatively small velocity perturbations, and a hlgh approximation to
them is given explicitly (§2-1-1).

Branch lines (Lighthill 1947) may occur, at which the solution is singular; these singu-
larities can be removed by a change of independent variables, but it may often be more
convenient to proceed directly by the help of a particular solution satisfying the singular
part of the boundary conditions. This solution is given in §2-3 in the form of power series
in one characteristic variable with coefficients depending on the other.

The solution is not singular at limit lines, but indicates them clearly when they occur.

1-2.

In developing the present method of solution, much attention has been given to the
boundary conditions most commonly encountered in physical problems. In the theory of
two-dimensional, inviscid fluid flow, whether subsonic or supersonic, the bouhdéry con-
ditions may be divided into three classes according to whether they are prescribed on a
boundary the position of which is (i) known in both the hodograph plane and the flow plane,
or (ii) known only in the hodograph plane, or (iii) unknown in the hodograph plane.

For supersonic flow, examples of the first class are the Cauchy boundaries and the charac-
teristic boundaries. For problems involving only these, the solution of the reduced equations
can be obtained directly by quadrature (Courant & Hilbert 1937), once the Riemann
functionsare known. As an example, thefirst wave interaction in the supersonic jet expanding
from a perfect nozzle is treated in §§ 3 and 3-0-1. A high degree of accuracy is achieved with
relatively little labour.

An example of the second class of boundary conditions is a free streamline (jet boundary),
on which the pressure is a prescribed constant, but the stream direction is not known
a priori, so that the boundary is ‘firm’ in the hodograph plane, but ‘floating’ in the flow
plane. For this class of boundary conditions, Riemann’s method does not furnish the
solution directly, but leads to an integral equation, in the first place, and the method of
double power series will often be preferable, particularly when an approximation of high
order is required. The first ‘period’ of the supersonic jet, which contains a reflexion of a
simple wave from the jet boundary, is treated in §§ 3-1 to 3-1-2. At first sight, the method of
double power series appears little suited to this problem, which involves three wave inter-
actions requiring each a different pair of such series. In fact, the method is found con-
venient and powerful. The first term of the series yields a solution equivalent to Hasimoto’s
(1953) and superior to that of linearized theory (Prandtl 1904, Pack 1950). Two terms
suffice to explain shock formation and aperiodicity, except in a small range of Mach
numbers, where more terms need be considered.

- The curved streamline of prescribed shape in the flow plane, but on which the pressure
is not given, affords an example of a boundary condition of the third class, and this is the
mostimportant type of boundary condition arising from physical and engineering problems.
It corresponds to the ‘direct problem’ of aerofoil theory. Here, Riemann’s method leads

* For its extent, see end of §2-1-1.
58-2
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always to an integral equation for the pressure distribution on the streamline. Additional
difficulties, however, are encountered with this class of boundary conditions in both
subsonic and supersonic flow. The differential equations are linear only when the velocity
components or the characteristic variables are employed as independent variables.* The
boundary conditions, on the other hand, are most naturally formulated in terms of the
position co-ordinates in the flow plane as independent variables. If an analytical solution
method is to be generally useful, a way needs to be found of reconciling these conflicting
requirements. As an example, the reflexion of a simple wave from a curved streamline
is treated in §§ 32 to 3-2-3. The conflict of requirements is seen to lead to a danger of the
results being marred by lack of detail, when approximations of only a relatively low order
are desired, and it is shown how the difficulty can be resolved by application of an apparently
inconsistent procedure. To clarify the situation, the ‘thin-body’ concept is applied with
precision (§3-2-1), and it is found to imply small perturbation velocity everywhere, but not
small velocity gradients (§3-2-3), in contrast to the assumptions underlying linearized
theory. The present theory also furnishes the extension to the general wave-interaction
problem of Whitham’s (1952) uniform first-order theory (§3:2-3).

The Riemann method is best suited to problems involving floating boundaries in the hodo-
graph plane, when approximations of a low order are desired ; but when a very high accuracy
is required, the method of double power series is preferable. Its application to this type of
problem is briefly discussed in §3-3. The method is found to transform the differential
equations and boundary conditions into a sequence of systems of linear, algebraic equations
which can be solved successively. This form of the problem may be better suited to high-
speed computing machines than forms modelled on the numerical method of charac-
teristics (Clippinger & Gerber 1950; Courant, Isaacson & Rees 1952).

2. BASIC EQUATIONS

The equations of motion for the two-dimensional, steady, irrotational, homentropic,
supersonic flow of a perfect gas can be written in the following, ‘characteristic’, form
(Howarth 1953): '

dy/dx = tan (0 —u), 6-+t=a = const., on any ‘plus’ Mach line, (1)

dy/dx = tan (0+4), 0—t=f = const., on any ’minus’ Mach line, (2)
where #, y are Cartesian position co-ordinates in the plane of the flow; ¢ and # are the polar
components of velocity; x is the local Mach angle,

t:fq %ti‘dqzlu—/larc tan (Atang) +3m(A—1), (3)

~with A2 = (y+41)/(y—1); vy is the ratio of the specific heats; and a; is the critical speed of
sound. The energy equation,

1  sin? 1
qz(g-{-s;r_lﬁ'f) = 2();/_i 1] a2 = const., (4)

relates ¢ and g, so that ¢, ¢, u are functions of one another.

* Even in problems like that of spherical waves of finite amplitude, where the differential equations are
non-linear in any case, the hyperbolic character of the equations demands characteristic independent
variables for their natural formulation. '
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The fundamental role played by the Mach lines suggests employing the ‘ characteristic’
" variables, a and f, as independent variables. The left-hand set of equations (1) and (2)
can then be written in the more explicit form

0x/0f = hgcos (0—p), 0y/df = hysin (0—p), (5)

0x/0a = h,cos (0+p), dy/da=h,sin (6+ ), (6)
where £, («,f) and h4(«,f) are parameters defined by these equations themselves. The
transformation to characteristic independent variables is analogous to the hodograph
transformation and, like that transformation, leads to a set of linear equations for ¥ and y.

If the positive direction on a Mach line is defined as that making an acute angle with the
stream direction, then equations (5) and (6) imply that #,df and %, da are the elements of
length, in the physical plane, in the positive directions of the plus and minus Mach lines,
respectively. A physical interpretation of these characteristic length parameters is obtained
by noting that the components in the positive Mach directions of the gradient of polar
velocity components are

q/hg0f = —qtanp(2hs), 0q[h,de = qtanp/(2h,), (7)

00/hg9p = 1/(2hy), d0/h, 00 = 1/(2h,). (8)
That is, the parameters are inversely proportional to the components of velocity gradient
in the positive Mach directions.

The length parameters %, and /, are particularly closely related to the mathematical
structure of the flow (Meyer 1949), and the components of velocity gradient* in the Mach
directions are particularly closely related to the physical structure of the flow (Meyer 1952).
This suggests employing as dependent variables 4, and /g, rather than x and y. A mathe-
matical advantage of this choice of variables is that singularities of the correspondence
between the flow plane and the characteristic plane can be handled with ease. They have
been discussed by Craggs (1948), Meyer (1949), and Stocker & Meyer (1951). Limit lines
appear as lines &, = 0 or £, = 0 and need no attention, within the framework of equations
(9) and (10); for shock waves see part II. Branch lines appear as singularities of %, or Ay,
of which both position and strength are directly indicated by the boundary conditions, and
a method of dealing with them is described in §2-3 below. Lines of discontinuity of the
velocity gradient, or of higher derivatives of the velocity components, are similarly indicated
by the boundary conditions and located on fixed lines « = const. or £ = const. in the
characteristic plane. They need attention only if the boundary conditions are expanded in
power series, in which case the solution must be pieced together from the solutions in sub-
regions in which the boundary conditions are analytic (see, for example, §3-1 below).
It may therefore be assumed in the following (except in §2-3) that %, and 4, are everywhere
bounded and are piecewise analyticT functions of ¢ and f.

Differentiation of (5) and (6), with use of (1) to (4), yields the ‘focusing equations’,

Ohgldo = m(hgcos 2u—h,), (9)
Oh,[0f = m(hg—h, cos 2u), (10)
where | m(t) = 3(1 —dp/d?) cosec 2u = (y+1)/(8sinp cos®u). (11)

* By inference from the components of acceleration in the analogous problem treated by Meyer (1952).
+ This term will be used here to indicate the existence of continuous partial derivatives of all orders.
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In contrast to (5) and (6), the coefficients in (9) and (10) are known functions of « and f,
in fact, of (a—f). Moreover, it is shown in Meyer (1949) that the function

Sw) = [{(y—cos 2u)7 (sin ) =7~ =Vsec u]t (12)
(figure 1) plays an important role in the solutions of our equations, and use can be made of
this by introducing yet another set of dependent variables,

U=h[f(0)s V= hy/fi), (13)

for which (9) and (10) reduce to dU|If = mV (14)

V/da = —mU. (15)

Alternatively, the variables Z=U+V, Y=U-V (16)
may be employed, for which (14) and (15) become

0?Z)00.0f+ ¢(a—p) Z = 0, (17)

02Y |00 df +y(a—f) Y = 0, (18)

with $(a—pf) = m?>—Ldm/dt = m?[14+{2—1/(msin 2u)} (3 —4 cos? u)], (19)

V(a—p) = m?+3dm/dt = m?[1—{2—1/(msin 2u)} (3 —4 cos?u)]. (20)

It is often convenient to solve both (17) and (18) in order to find U and V from (16),
but it is not necessary. For instance, if (17) only is solved, U can be found by quadrature

from f a(bU)[3p = Zdb|ap,

or V from a(bV)/of = boZ[dp,
by (14) and (16), where

Loy v+cosp, . Ly-1) 1

| b= exp{—2f m(t) dt} = [{:coT,a (s1nﬂ)7+l} ) sec,u:l )
with 12 = {(y+1).

Inany case, &, and /4 are found from (13), and from them the physical and mathematical
structure of the solution can be deduced. The velocity gradient, for instance, is given by
(7) and (8). For points of particular interest in the flow plane, the co-ordinates can finally
be obtained by quadrature from (5) or (6).

2-1. THE RIEMANN FUNCTIONS
For equations (17) and (18), respectively, the Riemann functions R(§,7; «,/) and
S(&,n; a, f) satisfy the equations (Courant & Hilbert 1937)
| Re+$(E—n) R =0, : (21)
Sey+yE—n)S=0 (22)
(suffixes are now used to denote partial differentiation with respect to characteristic
variables), with boundary conditions

R(ayn; 0, p) = R(E, f; 0, f) = 1, (23)
S(OL, 75 0"/5)) = S(‘g;/?: 0‘:/?) = 1. (24)

The difficulties in solving these equations arise entirely from the awkward nature of
the dependence of ¢ and ¥ on ({—7) (see equations (19), (20), (11) and (1) to (4)). Figure 1


http://rsta.royalsocietypublishing.org/

JA '\

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

%

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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shows a graph of ¢, ¥, f(4) and ¢ against the Mach number M for y = 1-4. Both ¢ and ¢ are
singular at sonic speed and at vacuum speed, but show a relatively slow variation with
Mach number at medium supersonic speeds, and ¢ has a minimum at about M = 2-5.
Accordingly, attention will first be paid to the medium Mach number range.

125
| -
I -
10
| 1--
8: e
i \¢ g
6f L
| / : A
[ s .
4l // ///
| A =
Ve
’// —
\\ 7 >‘5:1—-/*{T/
/—- B
"1/ 2 3 M |4 5 6
14
-9 ( . ]
...4’

Ficure 1

In this range we choose a base point (¢, £,), put

@ =a—ay B =F—Pyp E=E—ay 5 =n5—p,

consider R as a function of the dashed variables, and rewrite (21) in the form

Reyp+goR = [$o—$(&' —1"+a0—F)] R, (25)
where ¢, = ¢(ay—f,). If the right-hand side of the equation (25) is now treated as a known
function and the equation is solved by Riemann’s method in terms of the appropriate
Riemann function, r(x, y; &', n’), an integral equation,

RE,p'sa,f) =105 0,8)
g' 7" y ’ ’ ’ ’
| I8yt i) Risys . B 93 € dady, - (26)
is obtained for R. The Riemann function r is. |

r(%y; &, 1') = Jo(2[do(x—E&) (y—1')1*) (27)
(Courant & Hilbert 1937; J, denotes the Bessel function of zero order), and constitutes
a convenient starting point for an iteration procedure to determine R. Indeed, if

! 4 / ’ g’ 1” 14 ’ ’ ’/
R(E 0o\ f) = — fa,fﬂ,[qs—sﬁo] H(3%93 €51") Rya(y; o f7) ddy, (28)
with R, = 7, and if § R, exists, then this series satisfies (21) and (23). A sufficient condition
n=0 :

for the cdnvergence of the series can be found by Picard’s method (Courant & Hilbert
1937)-
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474 J. J. MAHONY AND R. E. MEYER ON THE
A corresponding solution for § is obtained by replacing ¢ by ¢.

2-1-1. In order to obtain a solution that lends itself more conveniently to numerical
handling, in many cases, replace ¢ in (28) by its power-series expansion about the base point,

$E—1) = 3 uloa—Fo) € —1')", | (29)

and 7 by the power-series expansion of the Bessel function (27) in terms of its argument.

This leads to the approximation ¥
Ry= 2R,
n=0

being obtained also in form of a power series, of which only those terms need be retained
that recur unchanged in Ry ;. Thus if [R,]® denotes all those terms in the power series for
R, which are at most of degree £ in (§'—7’), (¢’ —f'), (£’ —a') and (5" —f’), then we take as
the Nth approximation for the Riemann function R the polynomial

Ry = [R e, (30)

where R, is given by (28).

The convergence of this scheme of successive approximations can be established by a
method similar to Picard’s. The series (29) will converge for | £’ —5’ | <4, where 0 is a positive
constant depending on the choice of the base point, and hence the coefficients A, of the series
for rg,

8 —7) Z [—8o& —=%)(n —y)]" (n!)72 = 2/1 (%95 & +n'5 2g—Fo) (€' —1")"

will satisfy | A, | 8% < K(ay—pf,), with K independent of £. A sufficient condition for the con-
vergence of Ry, to R can then be shown to be
(e/0)2+ | & —a' ||y —p"| (1 +¢/d) K<1,

where ¢ denotes the largest value of | x—y | occurring in the characteristic rectangle over
which the integral is taken in (28). A necessary condition is not established here, but it may
be noted that R is analytic in all its arguments, provided only {—# and ¢—/ do not attain
values corresponding to sonic or vacuum conditions. For the equations (17) and (18) are
self-adjoint, and hence R and § (i) depend symmetrically on £, 7 and «, § (Courant & Hilbert
1937) and (ii) represent the solution of a particular flow problem with analytic boundary
conditions and, like the corresponding length parameters, they are therefore analytic in

¢ and 7.
To obtain explicit expressions for the polynomials Ry, note that they depend only on
the variables y=§¢ —o =E—a,
p=n'—F=1-p, (31)
and o=a —f =a—f—ay+ph
since Ry(En'5 o, ") = Jo(2[dovpl),

by (27) and (29), and since, if R, ,(£',7"; &', ") = R,_,(v, p, 7), (28) can be written
1p1 )
R, =—vp| [ J2horp(1—1) (L=w)]¥) R, (0, p10,0) 3 (o pu)¢ dudu
0o k=

w(Vs 05 0)-
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By expanding the Bessel function in power series and performing the integrations, we
obtain for the polynomial [R]” that differs from the Riemann function R only by terms of
higher order than # in v, p and o, the expression

(Rl =3 3 RP, (32)

=0 4g=0

where s is the greatest integer such that 3s<{p:
RY —1,
REm+D — 0,
R = (=1)" (dovp)™ (m!) =
RY =0 for p<2,
RY = —¢yvp(o+4(v—p)),
R = —yvp[3(02+0%) —bp+ o lv—p) + 7],
R = o102 (v—p-+20)
+(do8s) [V —p+0)° = (0 4+7)° = (0 —p)°+ ],
RY = gy 502+ p2) o+ olv—p) + 7]
+ (F684) [V —p+0)° = (0 47)° = (0 —p)°+0°],
etc., and RP =0 for p<s5, _
R = (1,0p)* [1(*+ %) — oo +0(v—p) +07,

} for integral m,
, .

etc. , .
The corresponding approximations for the Riemann function § are obtained by replacing
¢, by the coefficient ¢ of the power series of § about the base point, ‘

$E=1) = 3 Yuloo—Fo) € 1" (33)

Tables of ¢, 4, (1), ¢ and ¢, for y = 1-4 and 1-3, are given in the Appendix.

Note that the coefficients in the approximations [R]® and [$]® for the Riemann functions
depend only on the coefficients of the series (29) and (33), respectively. It follows that
they depend only on (a,—f,) and hence only on the choice of the base Mach number of
the approximation.

It will be seen below that even the trivial approximation, [R]@=[S§]@=1, yields a solu-
tion that is at least equivalent to a uniform first-order theory of the conventional equations
of the flow (§3-2-3). For some problems it yields a solution of accuracy greatly superior to
that given by linearized theory (§3-0-1). The expressions here given explicitly therefore
suffice for the treatment of problems involving relatively large variations of pressure and
Mach number. The rapid convergence of the partial sums (32) to R depends, nevertheless,
to some degree on the rapid convergence of the series (29) for ¢, and when that con-
vergence is slow, then the iteration (28) may be more convenient.

The results obtained indicate more clearly the extent of the ‘medium Mach number
range’, to which they apply. Two points of view need be distinguished. In principle, the

59 Vor. 248. A.
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restrictions are only A/>1 and 1/M > 0, for these conditions ensure convergence, provided
the interval of Mach numbers to be covered in a problem is sufficiently small. For numerical
purposes, on the other hand, the effort required to compute the solution to a given accuracy
is more relevant. If the centre of the interval over which the Mach number varies in any
given problem be supposed fixed, then the effort increases with the extent of the interval;
if the extent be supposed fixed, then the effort is the greater the nearer one of the extreme
speeds occurring comes to either sonic or vacuum speed.

2:2. DOUBLE POWER SERIES
From (30), the Riemann function is obtained in the form of a power series. This suggests
that it may sometimes be profitable to obtain the solution of (14) and (15) directly in form
of such a series. Like ¢ and ¢, m may be expanded in a series

m(l) =3 3 (—1)7 (1) s (a—ao) (o) (34
and if we write U :é, éou,’s(a—oco)’ (B—Bo), (35)
V=3 Su,(a—a) (B4 (36)

and substitute these series in (14) and (15), the recurrence relations
(4Dt =5 3 (1Y (@) o (37)
and (H D) 0o == 3 (=1 (@) g (38)

are obtained. ,

Next, the boundary conditions have to be expanded in power series to supplement (37)
and (38) in order to form a system of equations from which the coeflicients %, ; and v, ; can
be determined. This step is best discussed at the instance of examples, and the discussion
is deferred to §§3:1-1 and 3-3 below.

The convergence of the series (35) and (36) is assured, under suitable assumptions on
the boundary conditions, since the same series will be obtained by Riemann’s method when
both the Riemann functions and the boundary conditions are employed in their power-
series forms.

2-3. BRANCH LINES

The singularites of U and V are called branch lines. For instance, suppose that U and V
are prescribed respectively on AE, EB and AC (figure 2) as continuous functions, except
that U(e, f,) ~ (x—,) " near E. Then EF is a (‘single’) branch line (Meyer 1949).

To reduce the problem to one that can be treated by the methods so far described, put

Ui(esf) = 3 e(f) (=2 (39)

expgnd mina Taylor '\s.eries m(t)‘ - sgoms ) (a_%)s, (40)
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and substitute into V=- “mU 1da, (41)
ap
B
Uy = [ m¥dg, (42)
A
in order to satisfy (15) and (14). There results
B f) = Sd,(8) (=) (43)
g il
and d(f) = %1 2 CxMy_g-1
F=0 .
Ay (1=1),*
&(P) =f 2 dy(f") mi_ () AF’
Aip=1
¢, = const.
B
oy Oty o} o
ﬂlh--_é B: :;1 E
|
_____ 1
B¢ D ¢ F
FIGURE 2

If, in addition to our choice of f, as limit of integration, we choose

¢ = lim (@—a,)  U(e, )],

a=ap
then U,(a,4,) is just the singular part of U(a,f;). The choice of «, as limit of integration is
imposed by our assumption that the series (39) for U, contains no integral powers of (¢ —a,),

and it implies V, (o 8) = 0. (44)

The series (39) and (43) can be derived term by term from (41) and (42) by an iteration
process, the convergence of which can be shown by a modification of Picard’s method. If
the series (40) converges for |a—a, | <0, then |my(f’) | d§<K,(f') for f<B' <p), and a
sufficient condition for convergence of (39) and (43) is |a—a, | <(K}|f—F,|+2/0,) L
Hence (U—U,) and (V—V,) satisfy (14) and (15) with regular boundary conditions on
AE, BE and (at least) some line 4’C’ between AC and EF, and so these functions can be
found in AEFC and BEFD by the methods described in the preceding sections.

It may be worth noting that, in our particular solution (U,,¥;), EF is not only a branch
line, but also a limit line (Meyer 1949), by (44); indeed, EF is mapped into a point in the
physical plane and our particular solution is a ‘centred wave’, even if not a simple centred

* The calculation of the coefficients ¢;, d; is facilitated by noting that m(8) = (—1)¢ (s!)~! d*my/d ",
since ¢t = (a—2).
59-2
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wave (Prandtl-Meyer expansion), for the Mach lines, £ = const., are straight only locally
at the centre, and curved elsewhere. With the exception of the line EF, however, U, and ¥
are analytic in « and £, since they represent the solution of a particular flow problem with
boundary conditions that are analytic, except for U, at E.

'Other cases of branch lines can be dealt with similarly. For instance, for a ‘double’
branch line (Meyer 1949) the corresponding series to start from would be

U, = 3 6(6) (e
and the same procedure would lead to the construction of the solution for the boundary
conditions : ;

U, f1) = co(e—a,) 4,

Vz(‘xb’ #) = 0.

The method just described can serve as an alternative to the methods based on the
Riemann function and on the double power series, both for the construction of particular
solutions and of solutions for definite boundary conditions, especially if a more general
choice of the lower limits of integration in (41) and (42) is admitted.

2:4. HYPERSONIC FLOW

Since both ¢ and ¥ are singular for M = oo, the convergence of the series (29) and (33)
is too slow if the base Mach number is too large, and it is more convenient to expand about
a base point for which 1/M = 0. If &/, f" are the co-ordinates in the characteristic plane
referred to such a base point as origin, then

do—F) = 3 il ~p)*
and P =) = 3 dile —p)

and this suggests that equation (21) be rewritten in the form
Roy+0L1(8 1) 2R =R 3 (' =)

If the right-hand side of this equation is treated as if it were known, then it is again an
equation for which the Riemann function, 7/, is known, and by its help the equation can be
transformed into an integral equation similar to (26).

The Riemann function 7’ is ‘(Riemann 1860)

Y (x5 & p') — [(x—y) (5’—771)]"F{A,/1, , (=) (%ﬂ’_);,

(x—7") (€'—y) (' —x) (§'—y)
where F denotes the hypergeometric function and A is either root of
AA—1) =¢_,.

If ¢ and ¢ are expanded, by the help of (19), (20) and (11), it is found that

621 = (r+1) 3=7)/[4y—1)"1 and ¢, = (y+1) (3y—1)/[4(y—1)7],
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and it follows that v
ApLy) = 3(r+1)/(y—1) or —3(3—y)/(y—1)
and AWL) =4By=1)/(y—=1) or —(r+1)/(y—1).
Now if 1 is a negative integer, the power-éeries expansion of the hypergeometric function

terminates after a finite number of terms and hence in that case the analysis is greatly
simplified. The respective values of y for which A is a negative integer, —n, are

7(621) = (2n+3)[(2n+1) (n=0,1,2,...),
and y(¥l) = (2n+1)/(2n—1) (n=1,2,...),

in fact, just those values of y which play a similar role in the theory of one-dimensional,
unsteady motion of a perfect gas (Love & Pidduck 1922). This is not unexpected, in view of
the work of Hayes (1947) and Goldsworthy (1952) on the analogy between one-dimensional
unsteady motion and hypersonic flow.

The interest of the present results lies in that they suggest a possibility of obtaining better
approximations for hypersonic flows than those known to date. If negative values of A are
taken, the hypergeometric functions remain bounded as the vacuum point is approached,
for then their argument approaches unity from below along the real axis. Moreover, the
existence of Hayes’s analogy suggests that 7’ is indeed a suitable starting point for a con-
vergent iteration scheme yielding the Riemann function, R. A detailed examination will,
however, be deferred to a later date. ’

2-5. Near-sonic flow

The functions ¢ and ¢ are also singular for M =1 and their expansions about a base
point with this Mach number are of the form

O R G RN AL (45)
and Ve h) = h) S g, (46)

with ¢y = 5% and y§ = — %, by (19), (20), (11) and (1) to (4), independently of the value
of y. Integral equations for R and § can therefore be obtained just as in §§ 2-1 and 2-4, the
auxiliary Riemann functions being now » ;
/ [ X y) £ —7) F{__g 1y (_é:*)_(y—v)}
E—y) (x—1) 6> 6”7 (E—y) (x—7)
N R =1
(E—y) (x—n)1 " 1676 (E—y) (x—p))"
These hypergeometric functions remain bounded as M — 1, but the hypergeometric series
do not degenerate. Moreover, the convergence of an iteration process like the one employed -
in §2:1-1 must now be much slower, on account of the form of the series (45) and (46).
Despite these difficulties, the present results suggest a possibility of obtaining higher
approximations to the first-order, transonic theory based on Tricomi’s equation. The useful-
ness of the present approach is, however, seriously impaired by the restriction to supersonic
flow implicit in the adoption of characteristic variables.

and
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3. THE FIRST WAVE INTERACTION IN A SUPERSONIC JET

When a two-dimensional jet issues from a perfect, supersonic nozzle into a container at
a pressure lower than the ultimate pressure in the nozzle, the expansion at the lips of the
nozzle (A and 4’ in figure 3) produces two centred simple waves (ABC and A’BC"). The first
wave-interaction problem in the jet is therefore the interaction of two symmetrical, centred
simple waves; it can also be interpreted as the reflexion of a centred simple wave from a
straight streamline.

Ficure 3. Flow plane.

B
0 to-8=7 to+d o
st B 0 __Ic
T —Ip
~trd C D

Ficure 4. Characteristic plane.

Let & denote the angle through which the stream is deflected at the centre 4. Then
6(B) = 0, 6(C) = 8, and since f(C) = f(B) and f(B) = —a(B) = —#(B), t(C) = d+(B).
Again, §(D) = 0 and a(D) = «(C), so (D) = t(B)+24. The mapping of the interaction
region BCDC' into the characteristic plane is therefore the square shown in figure 4. Corre-
sponding points in figures 3 and 4 are denoted by the same letter.

Let the centre of the square be chosen as the base point of the approximation. The value
of t and o at B is then T =t,—9,

and the ultimate Mach angle in the nozzle (half the angle ABA') is uy = (7). Moreover,
choose half the width 44’ of the nozzle mouth as unit of length.

To derive the boundary condition on BC (f = —7), the simple wave 4BC (figure 3)
needs to be considered briefly. Here £ = const., so 1/h; = 0 and from (10), dk,/hsdf = m,

d since £, = 0 at 4,
and since 7, a h,(R) = mJR}zﬂdﬁ = mi(a),
4
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where R is any point on BC and the integral is taken along the straight Mach line AR. It
is shown by Meyer & Holt (1950) that the length, /(a), of the straight Mach line segment
between two fixed, curved Mach lines in a simple wave varies proportionally to f{4), and
since the length of the segment 4B is cosec yy = My, the ultimate Mach number in the

nozzle, ha(R) = omf(i), where ¢ = My/f(uy) (47)
and Ula, —7) = cm. (48)
It follows by (1), (2) and (15) that U, = }cdm/d¢ and V, = —cm? on BC, and by (16), (19)
and (20, (o) = —chlat )}
Y,(0,—1) = cp(atr).
The boundary conditions on BC’ can be deduced similarly. They are
}l,e = —ocmf(p), (50)
Zy(1,) = —ed(1—F),
Yg(7,) = — e (1—F).
By (47), (50), (13) and (16), the value of ¥ at B is
Y(r, —1) = 2cm(r). (52)

The solution for Y at an arbitrary point P in the square BCDC’ (figure 4) can now be
obtained by the help of Riemann’s method. That is, multiply (18) by § and (22) by ¥,
subtract, integrate the resulting identity with respect to £ and 5 over the rectangle BTPQ
(figure 4), and integrate by parts to obtain

(49)

} (51)

[($¥et,~ 18,1 ds — o,

where the integral is taken anti-clockwise round the contour BTP@) and Z, /, denote respec-
tively the components of the outward unit normal in the directions of { and # increasing.
On account of the boundary conditions (24) for S, this reduces to

B T P
~[ steae—[ ¥8,dp— [ Ydg—o.
Q B T

Upon integrating by parts in the second integral and then substituting the boundary
conditions (49), (51) and (52) for ¥,

T B
Y(P) = 2cm(B) S(B) — fB¢Sd;;~ ngldeg
is obtained, and by (22) and (24), this reduces to
Y(P) = 2ecm(B) S(B) —cSy(B) +6S,(B),
ie. Y(“sﬂ) = 26”7'(7) S(T’ —T; “’ﬂ) +C[S77(Ta —T7; “aﬁ) _Sg(T’ —T; “aﬁ)]
= 2em(1) S(1, —7; 2, f) —cad;S('r, —7; 0, 5). (53)

Similarly, Z(a, ) = c[R,(1, —T; &, ) + Ry(1, —7; 0, B)].
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The solutions of the (exact) equations (17) and (18) for this problem are thus expressed
directly in terms of the Riemann functions, without even a quadrature.
3-:0-1. To find the pressure distribution on the axis of symmetry, note that

P [sin’x y—142sin?p, /@D
Py Lsin?uy y—1+2sin?y

: (54)

by Bernoulli’s equation, where p is the pressure and x the Mach angle. On the axis of
symmetry, § = 3(a+/) = 0 and hence { = a and

dx/dt = (h,—hg) cos , | (55)
by (1), (2), (5) and (6). It follows from (13) and (16) that
#(0) = (1) + [ (&, 1) fiu) cospd (56)

x(1) being the abscissa of B (figure 4).

These results have been applied to the problem of a jet of gas (with y = 1-3) issuing from
a perfect nozzle at Mach number 1-5 into an atmosphere at a pressure equal to half the
initial pressure of the jet. This example was chosen to make possible a comparison with the
results obtained by Pack (1948) by Massau’s numerical method* of integration of the
characteristic equations. It also provided a practical test of our method in a case where the
iteration procedure devised for the medium Mach number range was not a priori certain
to converge rapidly.

- For y = 1-3, the sonic singularity of y has a marked influence on the behaviour of this
function even at Mach numbers near 1-5, and the Taylor series of  near the base point was
found not to converge rapidly to i over the whole range of the problem. An approximating
polynomial, ¥, was therefore fitted to ¢ by the method ofleast squares and, with ¥" employed
in the place of ¢, the iteration (28) was carried to an accuracy slightly exceeding that
obtainable from the approximation given explicitly in § 2-1-1.

The results of the computationt are shown in table 1 and figure 5. An upper bound for
the error, obtained directly from the integral equation for the Riemann function, guarantees
that the error is less than 0-002 in the pressure ratio. Moreover, with the approximate
solution thus far known, a close estimate of the error} can be obtained by the help of the
same integral equation and of the known function, ¢ —"¥. This indicates an error of less

~than 0-0002 in the pressure ratio. Pack’s (1948) results are also shown in figure 5, and it

appears§ that his own estimate of the error in his results is definitely conservative.
The accurate results for the pressure distribution provide an opportunity for a numerical
assessment of rougher approximations. The prediction of linearized theory is only

x(t) = const. = x(7) : (57)

(figure 5). A better approximation is obtainable, without any consideration of the wave
interaction, from the known, exact solution for the Prandtl-Meyer expansions centred at

* In which it is difficult to estimate the errors.
-t Which was carried out by Mr P. Skeat, Aeronautical Research Laboratorles Melbourne.

+ Though not necessarily an upper bound.
§ The authors are indebted to Professor Pack for the communication of detailed, unpublished numerical

results.
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the nozzle lips. This yields the pressure distribution on the Mach lines through B (figure 3)
and hence the value of dp/dx at B. In this way* the tangent at B to the curve of p(x) is

found to be 11
x(8) = x(7) —f—Z—éy—- cosec 2uy(1—p/py) (58)

(figure 5). The same result is, of course, obtained by expanding (54) and (56) in power
series with respect to  or ¢ and retaining only the linear terms.

TaBLE 1
® blby M x bltw M
1-1180 1-0000 - 1-56000 2:2 0-3773 2-1213
1-2 0-9140 1-5613 24 0-3282 22055
14 0-7428 1-6980 26 0-2883 22834
16 ) 0-6141 1-8199 2-8 0:2555 2:3559
1-8 0-5153 1-9298 3-0 0-2282 2-4236
2-0 0-4383 - 20298 3:0338 0-2239 2:4346
(3-2 0-2050 2-4871)
2:6
! ]
' n
' ) .
] W )
{ \\\\\ Z Z
] N
= ! S /
A : *\ ~
X/ 0:6 : \\\ \\\ / §
E (57) * N ) ST
| ST )
: A S>> Plpy | 18
' / . - -\\&
| N T S
P (59| (GO e
0-2 L \\ ==
11 . I Rl
™ 14
1-2 16 2:0 2:4 28 32
x

Ficure 5. The circles represent the points obtained by Pack (1948).

This is not, however, the first approximation suggested by the present theory of the wave
interaction. The exact solution is obtained in two stages, first by a transformation of the
characteristic equations into the equations (17) and (18) and secondly by the determination
of the Riemann functions for these latter equations by successive approximations. A first
approximation is thus obtained by using the exact transformations of the first stage in con-
junction with the roughest approximation, =1, for the Riemann function. Then (56)

reduces to / 3 s :
-1 # Cos ,
x(t) = x(1) — 5= 7 . Jue) e £ ap, , (59)
2sin? uy cos® uy f(uy) J ., 7 —cos 2u

* Or from (55), (13), (16), (56), (53) and from (3) and Bernoulli’s equation.

60 VoL. 248. A.
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by (53), (47) and (11). The pressure distribution found from (59) and (54) is also shown in
figure 5, and it is seen to represent a much better approximation than (58). This supports
the view that the exact transformation leading to equations (17) and (18) embodies the
main, non-linear elements of the solution so that (17) and (18) represent only a residual
problem, and the accurate calculation of the Riemann functions is a matter of relatively
less importance. Higher approximations should therefore be sought along the same lines
as this first, non-linear approximation. The first approximation to the Riemann function,

So = J2[Yo(E—a) (1—A) 1),

was found to give an error less than 0-01 in the pressure ratio.

3:1. THE FIRST PERIOD OF A SUPERSONIC JET

Linearized theory predicts an exactly periodic structure for a supersonic jet expanding
from a perfect nozzle, but experiment and two numerical computations by Pack (1948)
show that it is only approximately periodic, that shock waves are present and that these
effects result from the interactions of simple waves that occur in the jet. The purpose of this
section is to examine analytically the features of the flow for the case when the pressure
everywhere in the jet differs but little from the ultimate pressure in the nozzle.

If the technique of § 3 were applied to the second interaction region of the jet, which is
adjacent to the jet boundary, an integral equation would be obtained with the Riemann
function as kernel. Since a process of iteration or of series expansion would be required for
its solution, it appears preferable to resort to the method of double power series from the
start. The boundary conditions are firm in the characteristic plane, but they are only piece-
wise analytic, and hence it is not possible to represent the complete solution by a single pair
of power series (35) and (36). It is necessary to subdivide the first period into a number of
regions, which are indicated in figure 3 (p. 480), and to deal in turn with the regions
numbered I to XI. The solution in the unnumbered regions is obtained from that in the
others by symmetry.

In outline, the procedure to be adopted is as follows. Inregion I the flow is uniform and in
region ITitis a centred simple wave (Prandtl-Meyer expansion) of which the exact solution
is known and has been employed in § 3 to find the distribution, U, (), of U on the character-
istic BC (figure 3). By the help of this boundary condition, the solution for region III (the
first interaction region) is calculated to the desired order of accuracy by the method of
double power series,* and so the distribution, ¥;(f), of ¥ on the characteristic CD is deter-
mined. This serves as initial condition for region V, which is a simple wave. The solution
for region V can thus be written down and employed to find the distribution, ¥;(f), of ¥ on
EG. This, in turn, serves as boundary condition for region VI, the second interaction region,
for which the solution is obtained by the method of double power series. In particular, the
distribution, Uy(a), of U on GF is calculated, which serves as initial condition for the simple
wave of region VIII, and so on until the solution in region XI is calculated. In region IV,
VII and X the flow is uniform, and the respective values of # and ¢ in these regions are
obtained by tracing back appropriate characteristics. Region IX is a third interaction
region and region XI another simple wave.

* As an alternative to the method of §3.
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3:1-1. Forsimplicity, let o, and §, be the values of the characteristic variables in region I, *

and let the unit of length in the physical plane be chosen so that the length of AB equals

J#o)-* Ifthe stream is deflected at the lip of the nozzle through the angle 8, which is assumed
to be small, then a = 2,24 in region IV, and on the characteristic BC,

U= U\(a) = m(3e—35,)
= mo-+my (2 —ap) +imy(a—ap)? 4 0(8%), (60)
by (47) and (34). Comparison with (35) shows that u, , = m,/(r!) in region ITI. Moreover,
U+ V is proportional to the streamline curvature (Meyer 1949), which vanishes on the axis

and, if it is noted that # = 0 in region I and hence f, = —u,, it follows from (35) and (36)

that
U0 = —Vo,00 U0 %1 = — (”1,0“”0,1), etc.,

and the recurrence relations, (37) and (38), then suffice to calculate the coefficients U,
and v, .. Finally, the following distribution is obtained for ¥ on CD:

Vi(B) = V(ag+20,8) = —mo(1+2my0-+4m, %) — (B —fo) {my +2(m§ +mom,) 5}
—3my(f—Fo)?+ 0(8°). (61)

Turning to region V, where a=a,-+ 24, the distribution, V,(f), of V on EG is found from

V5(6) V() = — [mUdes = — [(mif()) hodla = —mi(B) ),

by (15) and (13), since the integration is taken along a straight Mach line f — const., on
which m and  are constant. The function /(£) is the length of this minus Mach line, between
the plus Mach lines CD and EG, and it varies proportionally to f(#) (Meyer & Holt 1950),

whence Va(8) = Vi(B) —ml(Bo) [f (1) (62)

where /(f,) is the length of CE (figure 3) and g, is the Mach angle in region IV. Since the
flow is uniform in region IV, the lengths of CE and CA4 are equal. That of C4, moreover, is
S [f (1) times that of AB (§3) and hence (62) reduces to

Va(p) = Vi(B) —m(30+8—3f)
= —2[my+ (m§+my) 8+ (2mym, +-my) 67]
A 2(p—Fo) {ma+ (my+momy +-mi) 8} —my(F—fo)*+ O(8). (63)
Thus the boundary conditions for region VI, the second interaction region, become on EG
V(g +28,8) = Vy(B),

and on the jet boundary EF, where dy/dx = tané and p = const. (and hence ¢ = const.
and a—f = const. = a,+20—f,),

U(a,a~050+ﬂ0~23) = V(O‘»“‘”“o"“ﬂo_%?)

* In contrast to the conventions of §3.
60-2


http://rsta.royalsocietypublishing.org/

A A

j A Y

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)\

' \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

486 J. J. MAHONY AND R. E. MEYER ON THE

by (5), (6), (7) and (13). Together with the recurrence relations (37) and (38), these boun-
dary conditions determine the coefficients u, ; and v, ; for region VI and the distribution
of U on FG, where f = f,— 20, is found to be
Ula,f,—20) = —2[my+ 3(mg+m,) 8+ (4mg+ 14mygm, + 5m,) 62]
+2(a—ay) {2mg +m; + (5m3 + 13mym, + 3m,) &}
— (a—a0)? (my+2my(mf+m,)) + O(8?)
=Us(®). (64)
Region VIII is again a simple wave, and an argument analogous to the one employed
for region V shows that the distribution, Us(«), of U on HJ is
Us(a) = Uy(a) +m(30+0—3fo)
= — [my+2(3mg + 2m,) 0+ 4(2m3 + Tmym, + 2my) 6?]
+ (a—ay) {4mg+ 8m, +2(5m3 + 18mym, + 4m,) 0}
— (20— t0)? (3 + 2o (m§ +-m,)) +- O(8%). (65)
On HJ, f = f,—26, so (65) prescribes U(a, f,—20) for region IX, the third interaction
region. The other boundary condition is U4V = 0 on the axis, where a+/ = 0, as in
region III, and by the help of the recurrence relatlons, (37) and (38), the distribution of V'
on JK is found to be
V(g ) = my+4(m§+my) 8+ 8(my+ 3mgm, +mg) 6
+ (B—Fo) {4m§+ 3my + 4(3m3 + Tmym, +2m,) 8}
+ (B—Fo)? (3my+2momy +mi) + O(8%)
-V (66)
Region XI, finally, is a simple wave in which « = const. = ;. To label the plus Mach

lines in this region denote by sf(x,) the distance from J to the point where any individual
plus Mach line crosses the minus Mach line JL (figure 3). Then

Vis, ) = Ve, ) —sm(3eg— 1)
= my(1—s) +4(m§+m,) &+ 8(my+ 3mym; +mg) 02
+ (B~ PFo) {(3 +5) my -+ 4mf+ 4(2my + Tmym, + 3mg) 0}
+ (B—F0)? (F(1—3) my+2mo(m§+my)) +O(6%)
= (1—s) m(}ao—3p) +4{yo+ (2me Yo+ o) 3} (3 +5—fo)
| +2mo (P —/5’0) (2044~ Fo) +0(8%), | (67)
by (15), (66) and (34), where
| Vo = mi+my = ¥(a,—fo),
: Yo = 2my+dmom; = (dy/de),_ ey, o>
by (34) and (20).
3-1-2. In inviscid, supersonic flow, the formation of shocks away from solid boundaries
is associated with the presence of limit lines (Meyer 1949) and these are lines where U = 0
or lines where ¥V = 0. Now U and V are both infinite in any region of uniform flow and
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either U or Vis infinite in any simple wave. It is therefore to the equations (60) to (67) that
we must turn in order to determine whether shock waves occur, or do not occur, in the first
‘period’ of a jet. It should be noted that all the series of which the first few terms are given
in those equations are convergent for sufficiently small J, provided the base Mach number
is neither unity nor infinite,* and the same holds for the double power series in the regions
of wave interaction, for in each individual region the boundary conditions are analytic.
These series are therefore also sufficient to decide the questions of shock formation and
periodicity for all jets with initial Mach number, M), greater than one and pressure ratio,
p/py» less than one by a sufficiently small amount. :

The series (60) to (66) all start with a constant term which is non-zero and not small,
by (11), and the same is true for the double power series in the regions of wave interaction.
The variables « and 4, on the other hand, vary only in an interval of magnitude d, in each
region. No shock waves, therefore, can be expected in regions I to X. This does not, however,
hold for the series (67) in region XI, where

0<s<1, —20<f—p,<0. (68)

A limit line will occur in this region if V(s,f) = 0 for any pair of values s, § in (68), and the
terms of first order in 0 in (67) show that this condition is always satisfied if | , | >4. Infact,
it can be shown that a shock will start from the front, JL, of the simple wave when ¥,>0
and that it will start from the tail, KM, when ¢,<0. o

There remains a small range of initial Mach numbers, near the particular one for which
¥ = 0, in which the question can only be decided by an examination of the terms of second
order in ¢ in (67). This shows that the condition is again satisfied if | ¥+ 0y} | > ¢, and that
the shock will start from the front of the simple wave, if ¢, 0¥ >0, and from the tail if
¥o+0¥0<0. Thus, only an interval O(¢%) near a certain initial Mach number, M,(y),
is left in which the terms given explicitly in (67) are not sufficient to decide the question of
shock formation completely.

Those terms suffice, however, to decide for all Mach numbers whether the jet is periodic
as predicted by Prandtl (19o4) and Hasimoto (1953) for pressure ratios sufficiently near
unity. A necessary condition for this periodicity is that the simple wave XI be centred at
a point symmetrical to 4 and hence

V(1L,A)=0 for —28<f—PB<0. (69)

Equation (67) shows that unless 5 = O(4), F(1, #) cannot be uniformlysmall even compared
with 42, But it is not difficult to show from (20) and (11) that dy/d¢>0 at all supersonic
Mach numbers for any perfect gas with y>1, and hence (69) cannot be satisfied if § is
sufficiently small. A closer examination of Hasimoto’s (1953) theory shows, in fact, that his
approximation implies neglect of terms O(42) in the position co-ordinates corresponding to
any given velocity. The error in U and Vis thus O(0), and an equivalent solution is obtained
from the trivial approximation, U = const. and V = const., to the solution of (14) and (15)
for wave-interaction regions. Such an approximation, although more accurate than linear-
ized theory (Prandtl 1904 ; Pack 1950), is inadequate for an explanation of the aperiodicity
of the jet and of shock formation in it.

* The limitation on ¢ is stringent for near-sonic and hypersonic base Mach numbers.
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3:2. REFLEXION OF A SIMPLE WAVE FROM A CURVED STREAMLINE

To understand the application of the theory to problems with floating boundaries in the
hodograph plane it may be best to consider a case containing some of the essentials of the
aerofoil problem for a non-uniform incident stream. Assume that the shape of a curved
streamline, S, is prescribed in the flow plane, i.e. x = x,(f) and y = y,(f) are given on S,
with dy,/dx, = tan#. Since this is not sufficient to determine a flow, assume also that a minus
characteristic, M, is specified (figure 6a), i.e. f = const. and a = a,,(x) (or x = x,,(a)) are
prescribed on it. For convenience, let the point of intersection of M and § be chosen as
origin in both the physical and the characteristic plane, and also as base point for the
Riemann functions.

¥
M |
|
]
5 \
4 \
\ \
\
\\ ‘ \
\B \
7\
’ \ \
Z ’ \\ \ x
0 0 ' \ -
\
A ‘\
S

Ficure 6a. Flow plane. Ficure 65. Characteristic plane.

The classical procedure is to suppose that ¢ = ¢,(¢) is also known on §, which is then a
Cauchy boundary; to employ the solution, by Riemann’s method, of this Cauchy problem
to calculate a(x) on M and so to obtain an integral equation for #(f) ; to solve this integral
equation in order to find the pressure distribution on §; and to substitute the result into the
solution of the Cauchy problem in order to obtain the complete solution, if required.

Accordingly, we shall employ supposed knowledge of ¢.(f) to calculate U,/(«), the
distribution of U on M, which is known from

dye/da = Uy, f(pay) cos (Opr+ tar) (70)

by (6) and (18), a suffix M indicating that values are to be taken at f = 0. The Cauchy data
required are U (f) and V(0), the values of U and ¥ on S, which are found from the equation
of the streamline § in the characteristic plane,

v U, oy /d0 — V,d,/do, (1)
by (5), (6) and (13), and from

dx,/df = 2U, f(u,) cos O cos u da,/dd, - (72)
by (1), (2), (5), (6), (13) and (71), where '
oy = 0+1,(0) ~ty, B = Hﬁts(ﬂ) +y, (73)
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and a suffix s indicates that values are taken on §. Riemann’s method (Courant & Hilbert
1937), applied to (17) and (18), gives

4
Zwyzam_f(myg+4R@L
0
4
Y(B) = ¥(4)— | (YS;d+Y¥,Sdy),
where OA4B is the Mach triangle based on the segment 04 of S (figure 65). Hence
(e) = f [m(t) R+$(Ry+S,— R, +5,)] U(0') (1 +de;/d6") do"*

— U,(0) - foc:(a'; 2,,0) A, | (74)

by (14) to (16), (28), (24) and (71), where # = ¢,(0') and the 'argument of the Riemann
functions and their partial derivatives is (§,7; a,f) = (0'+¢,,0'—t,; a,0). This is the
(exact) integral equation for £,(#), and hence for the pressure distribution on the streamline.

To solve the integral equation, consider a ‘thin body’, i.e. one on the surface of which ¢
is everywhere small. Assume that «;,(x) is also small, then the solution is confined to a small
region in the characteristic plane (figure 654) and the problem is of the type considered by
linearized theory. For definiteness, assume that a;, = O(f). Then if the Mach number
at O (figure 64) is in the medium Mach number range, the Riemann functions are 1+ O(6?)
and the first approximation to (74) is

Unle) = U(0) (140(0)), (75)

that is, the solution is obtained directly from the boundary conditions, without the Riemann
functions entering into the calculations at all. If terms O(f) are neglected against unity
also in f{) and the trigonometric functions in (70) and (72), then (75) implies

and hence a first approximation to the solution of (74) is
4P (0) = ap($,(0)), 4P = to+aP —0. (77)

3-2-1. Itis notimmediately clear whether such an approximation can be of any practical
use. Since terms O(f) have been neglected against unity in some of the factors in equations
(70) and (72), it appears doubtful whether such terms can retain any meaning in the other
factors. But if] for consistency, terms O(f) are neglected against unity in all factors in these
equations, then the approximation admits only streamline shapes consisting of straight-line
and circular-arc segments. Thus the approximation is, in principle, of the same order as
linearized theory, but, in fact, it may suffer from a lack of detail that is unacceptable.

It should be realized that this difficulty is not particular to the present theory, nor even
to supersonic flow. Linearized theory does not encounter the difficulty, since it employs
the boundary condition on the streamline in the form

0 = 0(x). (78)

* If x,(0) or x,/(a) are not one-valued functions, an auxiliary parameter must be employed instead of
0 or e.
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Exact theory must, as the price paid for linearization of the equations of motion, use them
in the form % — x(0). (79)

If 6 and its derivatives with respect to x are small, then the derivatives of x with respect to
¢ are large, and many terms of the expansion of x in powers of § are needed to represent x(6)
adequately. Hence if the theory is built up as a process of successive approximations,
accurate to successively higher order in ¢, then any boundary condition of the form (79)
stands in danger of losing definition of detail in the lower-order approximations.

To understand how the trap can be avoided, note that the small parameter of linearized
theory is, strictly speaking, the maximum absolute value, §,,, of § on the streamline, or some
equivalent constant. Accordingly, put g — 99

and expand the boundary conditions in series with respect to 0,

B0 =3X®8 (80)
and ) = SEf0,) (81)
J=0

which will converge for sufficiently small §,,.1 Similarly, f(x) cos (0,,+u#,,) in (70) is a
function of « and can be expanded in a series of the type (81) and hence U,, is obtained in
the form of such a series. With «,, assumed O(f,,), at most, the maximum of #(8) —¢,(0)
must be 0(d,,) (see figure 65), and hence, it is plausible to expand #,(f) in a series

L0) = b+ ST 6, (6 = 4(0)). (82)
, =
If it converges, then it follows first that
a,(0) = %Aj(ﬁ) ¢, with A, =T,+9; 4; =T, for j>1, (83)
j=1

by (73), and secondly that f{,) cos @ cos x, and m(Z;) can be expanded in similar series, and
hence that-U,(f) is also obtained in this form. Finally, it is seen from figure 64 that the
maximum values of the variables v, p and ¢ of § 2:1:1 are 0(0,,) and therefore RY’ = 0(6%,),
and the Riemann functions are also given in the form of power series with respect to 4,
by (32) and the corresponding expression for S.

All these series can now be substituted in the integral equation (74), and the coefficients
of equal powers of #,, compared on both sides to obtain successively the functions 7;(+)
by quadratures. ‘

3-2-2. The only remaining ambiguity concerns the way in which the coefficients in the
series (80) and (81) should be determined. This is a matter for choice and no generality is

lost by putting X,(9) = x,(0),
Eo(@/0,,) = xp(a),
and X;(9)=E;(x)f,)=0 for j>1.

* Tt is natural to begin the series (80) with a term independent of 8, since the chord of the streamline
segment, S, is usually taken as unit of length. For definiteness, it is assumed that x,, = O(x,).

1 Itis assumed that branch lines, if present, have been dealt with, for instance, by the method described
in §2-3.
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In this way, (77) is obtained in the more precise notation

4,(9) = aM(-%xs(ﬁ))/ﬁm,}

T,(9) = 4,—%, (77a)
which shows that (76) is to be understood to mean
3%5(0) = %3 (0+£,(0) =ty +O(07)).- (764)

Equations (76) and (77) are the result predicted by linearized theory for the wave inter-

-action caused by the reflexion of a simple wave from a curved streamline (figure 7).* Itis

seen, therefore, that the procedure proposed in the preceding section for the solution of the
integral equation (74) does not introduce any lack of detail.

m/
\
B \
\
\
\ \
\ \
\ N \
3 \
AN \
P \
’ \ \
’ N \
0 K N Ao, x
0 A S

Ficure 7. Flow plane of linearized theory.

The second approximation is obtained by neglecting terms O(62,) against unity. It is
still sufficient to put R=S5=1 in (74), and the result is
a?(0) = A,(9) 0,,+45(3) 07, = o, (35(0) %,(0)),

12(0) = to+ T,(9) 0+ T3(9) 03, = o (6) —0-+1,,
0
with k(0) = 1+ (2my— tan ) [0—% j x,(0') dﬁ’]-—moaM(%xs(ﬁ)),
540
where a suffix 0 denotes values taken at O (figure 6). ,

Higher approximations can be similarly obtained. The convergence of the series (82)
can be examined by Picard’s method, since the procedure for solving (74) is closely related
to an iteration method. ,

It is now seen that the expansions of the preceding section are not required in practice.
What is required is that the terms in equations (70), (72) and (74) be divided in two classes.
The first class consists of the Riemann functions, m(f), f(#), and the trigonometric functions

(which stem from (5) and (6)); all these may be said to represent the contribution to our
formulae of the differential equations. The second class consists of x,,, %,, Uy, U,, V., «,, B,

s3 Vs

* Ackeret’s theory concerns the special case where the incident wave can be approximated by uniform
flow, and the difference between Busemann’s and Ackeret’s theories lies in the approximation used for the
relation between ¢ and the pressure.

61 Vor. 248. A.
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and ¢, and these functions represent, or depend on, the boundary conditions. In order to
obtain a scheme of successive approximations without loss of detail, it is sufficient to adopt
the ‘inconsistent’ rule that all functions of the first class should be approximated by poly-
nomials of successively higher degree in the characteristic variables, or §, or ¢, but that the
functions of the second class should 7ot be approximated.

2:2-3. It remains to clarify the relation of the present theory to Whitham’s (1952)
uniform first-order theory of a simple wave. As far as the pressure on the streamline, S, is
concerned, Whitham’s theory is identical with Ackeret’s (1925). An equation equivalent
to Whitham’s for the shape of the minus Mach lines, # = const. = f,, is obtained from (2),

. dx/dy = cot (0+p).
If terms O(6,,) are neglected,

dx/dy = cotpy, and x—y cotu, = const. = x;—y, cot i,

where a suffix s indicates values taken on the streamline and a suffix 0 values taken at O
(figure 64). This is the approximation of linearized theory for these Mach lines. If terms
0(6%) only are neglected,

dx/dy = cot |1 —2m0ﬁs+2(m0—cosec 24, ], (84)
by (1), (2) and (11), and

x—ycoty, = x,—y, cot py—2(y —y,) f;m, cot ity + 2 cot uy(m, — cosec 2ﬂ0)f“a’§&y—,da'. (85)

Except for the last term, (85) is identical with Whitham’s equation for the minus Mach
lines; his function F(y) equals 14, in our notation, and his characteristic parameter y equals
x,—y, cot #,. The last term is due to the incident simple wave, which introduces a first-order
curvature of the Mach lines. For the problem considered by Whitham, a=0 and f, = 20,
and (85) suffices for the prediction of shocks. For the general problem of wave interaction,
however, the solution of the integral equation, (74), is required to furnish the relation
between f,(0) = 20 —a(f)* and the co-ordinates x,(8), y,(f), of the streamline, S. Moreover,
an additional relation must be derived from the full solution of the wave-interaction pro-
blem to furnish a relation between « and y (or x) on the minus Mach line £ = f..

While the prediction of shock shape is deferred to part IT below, it may be instructive to
describe briefly the prediction of shock occurrence, as an example of a problem requiring
knowledge of the full solution, not only of the pressure distribution on the streamline, S.
For this purpose, it is more convenient not to proceed from (85), but to define the limit lines
directly as lines of infinite velocity gradient, that is, lines U = 0 or V' = 0.

The solution for U is obtained by applying Riemann’s method to the general point B’
(figure 6a), rather than the point B, which gives

Ul p) = Ub,@)— [ 60’ ) (36)

* For consistency with the accuracy of (85), the first-order appi‘oximation giving the term 0(6,) in the
pressure distribution must be used, that is, again the pressure distribution of Ackeret’s theory.
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instead of (74). Here 0,(x) and 6,(f) denote respectively the values of § on the streamline,
S, at the points 4 and O’, where « and / take the same values as at B’ (figure 64, 5). Sub-
traction of (74) from (86) glves

Ules) = Ule) + [ 6105 0,0) a0’ [ 'G(0's 0, ) 0"

05(8)

— Uy() (14+0(6,), | (87)
by (75) and (77), and since a,, = O(0,,). The next approximation for U(a, ) is obtained by
neglecting only terms O(6,,) in G, which yields, by (74) and (72), ,

— PP my(1 4 0(0,,)) dy
V) = Uado)+ [ s &
and by (70)  f{m) cos uU(a, f) = {dxp/da+3mox,(0,(£))} (14 0(0,,))- (88)
An analogous expression for V is best obtained directly by integrating (15) from O’ to B’
(figure 64, b), which gives

Vi) =V(f)~ [ mlia' 1) U, ) do

;de’,

V(B —m”  Ulet) (14-0(6,)

by (87). Here V,(f) and «,(f) denote respectively the values of V and « at the pdint O’ of
the streamline. Now, V(f) can be expressed in terms of dx,/df, by (71) and (72), and the
integral can be evaluated by the help of (70), whence

Ft) 008 (0, 8) = (55550, ~molxle) s (N1} 1+ O(0 D )
By (89), lines ¥V = 0, i.e. limit lines enveloping the family of minus Mach lines, will occur
when ~ dx,/dp, >0, | (90)
and the co-ordinates, x,(f) and y,(f), of the limit point on any Mach line §# = const. will be
given by 1 dx,
| 5(8) =1(0,(0) = 5 35 (1+0(6,), } o
%(P) —4(B) cot py = (x,(F) —y(B) cot o) (14 0(6,,)),

provided the limit point lies within the region in which the boundary conditions determine
the solution. It will be noted that (91) is identical with the prediction obtained directly
for the envelope of the Mach line family (85) by neglecting the last term on the right-hand
side of that equation, and hence the curvature of the Mach lines has no influence on the
process of limit-line formation. But the prediction is not identical with that obtained for a
simple wave (Whitham 1952), where f = 20 and (90) means that the streamline, S, is
concave with respect to the flow. In the general case, concavity is neither necessary, nor
sufficient, due to the influence which the incident wave can have on the process of limit-line
formation. _ ‘

Moreover, shock waves may occur in the general case which strike the streamline, S,

and are reflected from it. They are due entirely to the structure of the incident wave, but
61-2
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may start in the region of wave interaction. Their occurrence is indicated by limit lines
U = 0 and, by (88), these occur in the region of interaction if

dixyy/da = —Fmyx,(0,(F))

for a point B” between 3 and S (figure 64). This means, first,
dx,,/da<0,

so that O’ lies to the right of O, i.e. a part, at least, of the incident wave must be a wave of

compression, and secondly, doey,/da> —mg (o)
M M)

by (764), so that O’ lies to the left of 4.

It would appear at first sight that, since the assumptions ¢ = 0(,,), «,, = 0(0,,) and
%3 = O(x,) imply that both dx /df; and dx,,/de are O(6;!), there can be no limit points
within the finite region of interaction. The assumptions do not, however, exclude the possi-
bility that §,,dx,/df; and 6,,dx,,/da are < 1 for some values of § and a, respectively. The results
obtained furnish, therefore, an extension to the wave interaction, with proof, of the result
regarding prediction of shock occurrence which Whitham derived from his hypothesis.
The proof shows also that the result isindependent of the assumption—implicit in linearized
theory, but not implied by the thin-body concept—that the velocity gradients are small.
In particular, the pressure distribution predicted by linearized theory on the streamline, S,
is correct to 0O(f,,), independently of that assumption. In fact, since zeros* of 4,,dx,/dd are
admitted, the results extend to the case of streamlines with (isolated) discontinuities of
slope.

It may be worth noting, moreover, that the assumptions that «,, = 0(0,,) and x,, = O(x,)
are not necessary. When they do not apply, the power series of § 3-2-1 must be modified,
but the results given (except for the error terms) extend both to Whitham’s case where the
incident wave is weakT and the reflected wave, therefore, nearly a simple wave, and to the
case of a simple wave emerging from the interaction. In both cases, the boundary conditions
do not restrict the solution to a finite region.

3:3. TREATMENT BY DOUBLE POWER SERIES

Understanding of the method of double power series (see § 2-2) will also be improved by
considering briefly its application to a problem with a floating boundary condition in the
characteristic plane. In this method, both the solution U, V and the boundary conditions
are expanded in power series with respect to @ and 4. To avoid loss of detail, a relatively
large number of terms must be retained in all the series representing boundary conditions,
even when very few terms in the series (34), (35) and (36) would suffice for an adequate
representation of the differential equations. For lower-order approximations, therefore,
Riemann’s method appears preferable. As the desired order of accuracy increases, however,
the double power series become more and more attractive. For, on the one hand, the
integral equation thrown up by Riemann’s method becomes more cumbersome to solve,
and, on the other hand, the danger of loss of detail recedes.

* They need not be isolated.

1 In that case, the error term in (88) is such as to invalidate the conclusions drawn with regard to the
formation of limit lines U = 0.
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To apply the method of double poWer series to the reflexion of a simple wave from a
curved streamline of given shape the following procedure may be adopted. By (35)

UM(“) = U(“> 0) = i Uy, 0%
i r=0

since &y = f, = 0 in (34) to (36), if the common point of M and S (figure 64, b) is again
chosen as base point and origin in the characteristic plane, and the coefficients u, , can be
found for all r from (70). In (72) the functions sec 6 dx,/df and f{u,) cos 4, can be expanded
in series (with known coefficients) in @ and ¢, respectively. It has been shown in §§3-2+1
and 3-2-2 that £ (f) possesses an expansion, (82), which may more briefly be written

1,(0) = 3 4,05,
k=0

By its help, f(4,) cos 4, may now be expanded directly in a series with respect to 6, and, by
(73), (85) and (36), similar series with respect to § may be set up for «,, £,, U, and V,. All
these series may be substituted into (71) and (72), terms may be rearranged, and the coeffi-
cients of each power of # may be compared separately.

The resulting relations, together with (37) and (38), form a system of equations which is
sufficient to determine the unknown coefficients, «, ,, v, ; and # for all 7, s and £, and which
has the following two properties: (i) The complete set of equations separates into subsets,
one for each integer n, each of which involves the u, ,, v, ; and # with r4s<z and k<n,
but none with 7+s>n or £>n. (ii) Each subset is a system of equations linear in ¢, and the
u, s and v,  with 745 = n. That is, the unknown coefficients can be computed successively
for each order of approximation, and, each time, a linear system of equations has to be
solved. The double power series method therefore presents the numerical problem in a form
particularly suitable for treatment by means of high-speed computing machines with
established routines for the inversion of matrices.

The authors would like to thank Professor M. J. Lighthill, F.R.S., for his encouragement.
J-J. M. would further like to express his gratitude to the Australian Department of Supply
for a generous grant which enabled him to study at Manchester University.
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APPENDIX

The following tables give the Mach numbef, M, the Mach angle, 4, and the functions

Sf(p) (equation (12)), ¢(«—p) (equation (19)), and ¥ (a—f) (equation (20)) in terms of
¢t = }(a—p) (equation (3)), for y = 1-3 (table 2) and y = 1-4 (table 3). More detailed tables
of # in terms of 1000° —¢, for y = 1-4, are given by Herbert & Older (1946).

TaBLE 2 (y=1-3)

¢ M w (deg.) S ¢ v
0 1-0000 90 0 le'e) —o0

0-05 1-1651 59-1219 8:6756 24-573 —12-290
0-10 1-2725 51-7991 8:1071 7-0886 —2-3032
' 0-15 1-3692 46-9147 7-9418 3:5804 — 05297
: 0-20 1-4612 43-1860 7-9415 2:2777 +0-0713
5 0-25 1-5509 40-1508 8:0385 1-6474 0-3465
0-30 16396 37-5834 8:2064 1-2946 0-4997
@) 0-35 1.7282 35:35563 8:4339 1-0788 0-5988
e 0-40 1-8173 33:3855 8:7159 0-93943 0-6715
0-45 1-9074 31:6192 9-0510 0-84663 0-7307
0-50 1-9989 30-0176 9:4404 0-78429 0-7831
L 0-55 2:0922 28:5521 9-8871 0-74305 0-8325
0 0-60 2-1876 27-2009 10-395 0-71723 0-8810
0-65 2-2855 25-9472 10-971 0-70317 0-9304
0-70 2:3861 24-7774 11-622 0-69855 0-9816
0-75 2:4898 23-6806 12-:356 - 070175 1-0354
0-80 2:5970 22:6479 ; 13-186 0-71177 1-0926
0-85 2:7079 21-6718 14-123 0-72796 1-1539
0-90 2-8231 207461 15-184 0-74989 - 1-2200
0-95 2:9428 19:8653 16-388 0-77737 1-2913
1-00 3:0677 19-0250 17-756 0-81039 1-3688
1-05 3-1981 18:2213 19-317 0-84907 1-4531
1-10 3:3347 17-4505 21-103 0-89362 1-5452
1-15 3:4780 16-7098 23-154 0-94445 1-6460
1-20 3-6287 15-9965 25-519 1-0020 1-7568
1-25 3-7878 15-3081 28:260 - 1-0670 1-8788
1-30 3-9559 14-6427 31-450 1-1402 2:0135
| 1-35 4-1341 139983 35-184 1-2226 2-1629
~ 1-40 4-3235 13-3732 39-578 1-3160 2:3290
' 1-45 4-5255 12:7659 44-781 1-4198 2:5145
> 1-50 4-7416 12:1750 50-985 1-5379 2:7224
= 1-55 4-9735 11-5994 58432 1-6716 2:9564
) 1-60 5:2232 110377 67-446 1-8236 3-2210
— 1-65 5-4932 10-4889 78-446 1-9971 3:5219
8 1-70 5-7862 9-9521 91-997 2:1961 3:8658
wn 1-75 6-1058 9:4263 108-86 2:4256 4-2612
1-80 6-4559 8:9108 130-08 2:6918 4-7190
1-85 6-8417 8:4046 157:10 3:0028 5:2531
1-90 7:2690 79073 192-00 3:3692 5-8811
. 1-95 77456 7-4179 23775 3:8046 6:6264
° 2:00 8:2810 6-9359 29875 4-3270 7:5201
2:05 8:8871 6:4607 381-64 4-9610 8:6043
2:10 9-5798 5-9918 496-75 57412 99370

2:15 10-3797 5-5285 660-67 6-7153 11-601

2-20 11-3147 5-0705 900-90 7-9532 13-714
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TABLE 3 (y=14)

¢ M w (deg.) S ¢ v

0 1:0000 90 o 0 —o0

0-05 1-1711 58-63632 6-5847 24-6386 —12-2189
0-10 1-2838 51-16376 6-1718 7-11899 —2-2408
0-15 1-3863 46-16408 60650 3-60132 —0-46709
0-20 1-4848 42-33572 6-0844 229484 +0-13747
025 1-5819 39-20992 6-1803 1-66321 0-41820
030 16789 - 36-55817 63335 1-31043 0-57840
0-35 1-7768 34.24988 65362 1:09565 0-68597
040 1-8765 32-20283 67854 0-95807 0-76863
0-45 1-9784 30-36151 7.0814 1 0-86782 0-83939
0-50 20833 28-68647 7-4263 0-80880 0-90512
0-55 21915 27-14866 7-8243 0-77175 0-96981
0-60 2-3038 25-72609 8-2806 0-75107 1-03605
0-65 2-4206 2440147 8:8025 0-74326 1-10571
070 25425 23-16115 9-3988 0-74615 1-18027
075 2-6702 21-99395 10-081 0-75838 126111
0-80 2-8044 20-89079 10-861 0-77920 1-34956
0-85 2:9458 19-84409 11758 0-80828 1-44703
0-90 3-0955 18-84743 12791 0-84563 1:55506
0-95 3-2544 17-89539 13985 0-89155 167544
1-00 3-4236 1698320 15-373 0-94666 1-81026
1-05 3-6045 " 16-10690 16994 101185 1-96197
1-10 37987 15-26285 18-898 1-08833 2:13358
1-15 4-0080 14-44802 21:150 1-17772 2:32871
1-20 4-2345 13-65968 23-833 1-28209 2-55185
1:25 4-4809 12-89525 27-055 1-40411 2-80863
1:30 47502 12:15268 30-959 1-54718 3:10607
1-35 5-0462 11-42991 35-736 171571 345320
1-40 53735 10-72512 41-647 191546 3-86168
1-45 57379 10-03680 - 49-053 215398 4-34672
1-50 61465 9-36336 58-460 244141 4-92872
155 66085 870350 70-600 279143 563516
1-60 7-1358 805592 86-550 3-22310 6:50420
1-65 77439 7-41949 107-94 37633 7-5897
1-70 84542 679305 137-33 44511 8-9698
175 9-2957 617565 178-84 53449 10-7615
1-80 10-309 5-56636 239-48 65355 13-1461
1-85 11-556 4-96418 331-75 81695 164174
1-90 13129 4-36828 479-37 10-4974 21-0758
1-95 15177 377789 731-07 13-9745 28-0323
200 17-959 3:19209 11980 19-5031 39-0914
2:05 21-958 2-61029 2169-8 29-0794 58-2456
2:10 28-207 203167 4566-5 47-8900 95-8680
2:15 39-369 1-45551 12348 93-1454 186-379

2:20 65-031 0-88109 55448 253-892 507-874

2:25 186-19 0-30773 129900 2080-13 4160-36
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